Does the kinorhynch have a hydrophobic body surface? Measurement of the wettability of a meiobenthic metazoan

نویسندگان

  • Daisuke Ishii
  • Hiroshi Yamasaki
  • Ryosuke Uozumi
  • Euichi Hirose
چکیده

The body surface of aquatic invertebrates is generally thought to be hydrophilic to prevent the attachment of air bubbles. In contrast, some interstitial invertebrates, such as kinorhynchs and some crustaceans, have a hydrophobic body surface: they are often trapped at the water surface when the sediment in which they reside is mixed with air and water. Here, we directly measured the wettability of the body surface of the kinorhynch Echinoderes komatsui, using a microscopic contact angle meter. The intact body surface of live specimens was not hydrophobic, but the anterior part was less hydrophilic. Furthermore, washing with seawater significantly decreased the wettability of the body surface, but a hydrophilic surface was recovered after a 1 h incubation in seawater. We believe that the hydrophobic cuticle of the kinorhynch has a hydrophilic coat that is readily exfoliated by disturbance. Ultrastructural observations supported the presence of a mucus-like coating on the cuticle. Regulation of wettability is crucial to survival in shallow, fluctuating habitats for microscopic organisms and may also contribute to expansion of the dispersal range of these animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanosecond Laser Surface Patterning of Bio Grade 316L Stainless Steel for Controlling its Wettability Characteristics

In this work, potential of the nanosecond laser processing technique on manipulating the surface wettability of 316L bio grade stainless steel is investigated. Results show that the steel wettability toward water, improves significantly after the laser treatment. Different analyses are assessed in correlation with wettability using Scanning Electron Microscope (SEM), Scanning Tunneling Microsco...

متن کامل

Wettability of Liquid Mixtures on Porous Silica and Black Soot Layers

Sophisticated manipulation of surface roughness and solid surface energy are widely used to design super-hydrophobic layers. In this work, we designed highly porous silica layer with contact angle (CA) of 145°, and its robustness was promoted with thermal treatment. Wettability of coated layer is studied with CA measurement for different liquid surface tensions using diluted organi...

متن کامل

Wettability Study of Super-Hydrophobic Silica Aerogel Powders

Due to the importance of super-hydrophobic silica aerogel powder as a material in the field of energy saving, its wettability in the presence of various surfactants was investigated. One anionic and two non-ionic surfactants with different molecular structures were used as wetting and dispersing agents. Wetting properties of the aerogel powders were investigated by the contact angle measure...

متن کامل

The Impact of Wettability on Effective Properties of Cathode Catalyst Layer in a Proton Exchange Membrane Fuel Cell

The produced liquid water in cathode catalyst layer (CCL) has significant effect on the operation of proton exchange membrane fuel cell (PEMFC). To investigate this effect, the transport of oxygen in CCL in the presence of immiscible liquid water is studied applying a two-dimensional pore scale model. The CCL was reconstructed as an agglomerated system. To explore the wettability effects, diffe...

متن کامل

Wettability of boron monolayer using molecular dynamics simulation method

Over the past years, two-dimensional materials such as graphene, phosphorene, silicene, and boron-nitride have attracted the attention of many researchers. After the successful synthesis of graphene, due to its many new applications, researches began to produce nanosheets from other elements, and among these elements, boron was one of the options. In the periodic table of elements, boron is ahe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016